login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A201283
Decimal expansion of x satisfying x^2 + 4 = cot(x) and 0 < x < Pi.
2
2, 4, 1, 5, 9, 1, 8, 5, 7, 4, 3, 6, 4, 5, 3, 6, 4, 5, 3, 7, 0, 5, 0, 7, 5, 8, 4, 3, 5, 7, 8, 0, 1, 5, 9, 7, 1, 9, 9, 2, 9, 0, 4, 8, 0, 0, 4, 4, 9, 4, 6, 9, 7, 2, 4, 4, 2, 7, 5, 5, 8, 7, 8, 7, 1, 7, 9, 7, 9, 1, 3, 8, 8, 1, 6, 6, 5, 4, 2, 9, 7, 0, 9, 5, 8, 5, 9, 3, 7, 4, 7, 9, 7, 5, 9, 3, 9, 3, 0
OFFSET
0,1
COMMENTS
See A201280 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=0.241591857436453645370507584357801597199290...
MATHEMATICA
a = 1; c = 4;
f[x_] := a*x^2 + c; g[x_] := Cot[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
RealDigits[r] (* A201283 *)
CROSSREFS
Cf. A201280.
Sequence in context: A198512 A059573 A308437 * A283739 A080427 A118906
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 29 2011
STATUS
approved