login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201142
T(n,k)=Number of nXk 0..5 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other
8
6, 15, 15, 20, 30, 20, 15, 5, 5, 15, 6, 135, 402, 135, 6, 1, 282, 117, 117, 282, 1, 6, 51, 5252, 7642, 5252, 51, 6, 15, 848, 758, 38763, 38763, 758, 848, 15, 20, 1189, 35810, 13009, 129244, 13009, 35810, 1189, 20, 15, 120, 4788, 593543, 120096, 120096
OFFSET
1,1
COMMENTS
Table starts
..6...15.....20.......15.........6..........1............6............15
.15...30......5......135.......282.........51..........848..........1189
.20....5....402......117......5252........758........35810..........4788
.15..135....117.....7642.....38763......13009.......593543.......2004404
..6..282...5252....38763....129244.....120096......4264060......46991775
..1...51....758....13009....120096....1268728......8360853......58395657
..6..848..35810...593543...4264060....8360853....543067656...11302225941
.15.1189...4788..2004404..46991775...58395657..11302225941..126701693572
.20..120.182640...480902.263910168..309819522.110916509158...83500574989
.15.2596..18486.17798640.769159517.1599103606.542120293937.9901442852486
LINKS
FORMULA
T(n,1) = binomial(6,n modulo 6). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
EXAMPLE
Some solutions for n=3 k=7
..0..0..0..1..1..4..4....0..0..0..0..1..1..3....0..0..1..2..3..3..4
..0..2..2..3..3..4..5....1..2..2..2..3..3..5....0..1..2..3..4..4..4
..1..2..2..3..5..5..5....3..4..4..4..5..5..5....0..1..2..3..5..5..5
CROSSREFS
Sequence in context: A334352 A128512 A352098 * A200902 A205132 A199223
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 27 2011
STATUS
approved