login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201095
Number of nX2 0..7 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other
1
28, 140, 140, 14, 728, 3696, 3273, 323, 10516, 37590, 22872, 1288, 52828, 199384, 125466, 8034, 251361, 795924, 417829, 19994, 734712, 2454383, 1348173, 72589, 2214440, 6602880, 3229480, 143081, 4945844, 15462250, 7894324, 387000, 11616040
OFFSET
1,1
COMMENTS
Column 2 of A201101
LINKS
FORMULA
Subsequences for n modulo 8 = 1,2,3,4,5,6,7,0
p=(n+7)/8: a(n) = (9664/45)*p^7 - (3831/10)*p^6 + (10235/36)*p^5 - (641/6)*p^4 + (3679/180)*p^3 - (47/30)*p^2
q=(n+6)/8: a(n) = (4832/9)*q^7 - (3523/6)*q^6 + (7607/36)*q^5 - (109/6)*q^4 - (115/36)*q^3 + (1/3)*q^2
r=(n+5)/8: a(n) = (9664/45)*r^7 - (6197/90)*r^6 - (259/36)*r^5 + (23/18)*r^4 - (11/180)*r^3 + (7/90)*r^2
s=(n+4)/8: a(n) = (2416/315)*s^7 + (172/45)*s^6 + (14/9)*s^5 + (43/72)*s^4 + (43/180)*s^3 + (29/360)*s^2 + (1/28)*s
t=(n+3)/8: a(n) = (9664/45)*t^7 + (9209/30)*t^6 + (27949/180)*t^5 + (81/2)*t^4 + (1579/180)*t^3 + (23/15)*t^2 + (1/5)*t
u=(n+2)/8: a(n) = (4832/9)*u^7 + (23255/18)*u^6 + (43211/36)*u^5 + (19297/36)*u^4 + (4229/36)*u^3 + (451/36)*u^2 + (5/6)*u
v=(n+1)/8: a(n) = (9664/45)*v^7 + (22331/30)*v^6 + (38495/36)*v^5 + (2443/3)*v^4 + (62269/180)*v^3 + (773/10)*v^2 + 7*v
w=(n+0)/8: a(n) = (2416/315)*w^7 + (3353/90)*w^6 + (14089/180)*w^5 + (6679/72)*w^4 + (3037/45)*w^3 + (10973/360)*w^2 + (3389/420)*w + 1
EXAMPLE
Some solutions for n=10
..0..1....0..1....0..0....0..1....0..2....0..3....0..1....0..1....0..0....0..1
..0..2....0..1....0..2....0..2....0..3....0..3....0..2....0..2....0..2....0..2
..0..2....0..2....1..3....1..3....1..4....0..4....0..2....0..2....1..2....1..2
..1..5....2..4....1..3....2..4....1..4....1..4....1..4....1..3....1..3....1..3
..3..5....3..5....2..4....3..4....2..4....1..5....2..5....2..3....1..4....2..4
..3..6....3..5....2..4....3..5....2..5....2..5....3..6....4..5....3..5....3..4
..3..6....3..6....4..6....4..5....3..6....2..6....3..6....4..5....4..6....4..6
..4..7....4..6....5..6....5..6....3..7....3..6....4..7....4..6....5..7....5..6
..4..7....4..7....5..7....6..7....5..7....4..7....4..7....6..7....5..7....5..6
..4..7....6..7....7..7....6..7....6..7....6..7....5..7....7..7....6..7....7..7
CROSSREFS
Sequence in context: A014705 A126415 A187047 * A239205 A050973 A095301
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 26 2011
STATUS
approved