login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200892
Number of 0..n arrays x(0..8) of 9 elements without any interior element greater than both neighbors.
1
200, 4059, 34350, 181336, 710976, 2269938, 6233356, 15250675, 34054592, 70608021, 137674186, 254905378, 451556600, 769941268, 1269757336, 2033423669, 3172578200, 4835901375, 7218440614, 10572623996, 15221164112, 21572066022
OFFSET
1,1
COMMENTS
Row 7 of A200886.
LINKS
FORMULA
Empirical: a(n) = (2/2835)*n^9 + (131/630)*n^8 + (2803/945)*n^7 + (1349/90)*n^6 + (41449/1080)*n^5 + (20423/360)*n^4 + (1149293/22680)*n^3 + (22741/840)*n^2 + (2011/252)*n + 1.
Conjectures from Colin Barker, Oct 16 2017: (Start)
G.f.: x*(200 + 2059*x + 2760*x^2 - 3509*x^3 - 1714*x^4 + 288*x^5 + 208*x^6 - 45*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=3
..2....3....2....3....2....2....1....2....3....2....1....2....0....2....1....1
..0....2....3....0....1....2....1....2....3....0....2....0....3....2....0....1
..2....2....3....0....1....3....3....3....0....0....3....0....3....0....1....1
..2....3....1....2....2....3....3....3....0....0....3....1....2....3....2....2
..2....3....3....2....2....1....1....3....2....2....1....1....3....3....2....3
..0....0....3....2....0....1....1....1....3....2....2....1....3....1....1....3
..3....0....1....2....1....1....0....3....3....1....2....3....2....3....3....0
..3....2....1....2....1....0....2....3....0....1....2....3....0....3....3....0
..1....2....3....0....1....1....2....0....3....1....2....2....1....0....0....0
CROSSREFS
Sequence in context: A219425 A341545 A297318 * A220390 A231803 A185988
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 23 2011
STATUS
approved