The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200886 T(n,k) is the number of 0..k arrays x(0..n+1) of n+2 elements without any interior element greater than both neighbors. 13
 7, 22, 12, 50, 51, 21, 95, 144, 121, 37, 161, 325, 422, 292, 65, 252, 636, 1121, 1268, 704, 114, 372, 1127, 2507, 3985, 3823, 1691, 200, 525, 1856, 4977, 10213, 14288, 11472, 4059, 351, 715, 2889, 9052, 22736, 42182, 50995, 34350, 9749, 616, 946, 4300, 15393 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS T(n,k) is the number of lattice points in k*P where P is a polytope of dimension n+2 in R^(n+2) whose vertices are lattice points, and therefore for each n it is an Ehrhart polynomial of degree n+2. This confirms the empirical formulas for the rows. - Robert Israel, Mar 21 2021 LINKS R. H. Hardin, Table of n, a(n) for n = 1..9999 FORMULA Empirical for columns: k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) k=3: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) k=4: a(n) = 5*a(n-1) -10*a(n-2) +20*a(n-3) -15*a(n-4) +21*a(n-5) -7*a(n-6) +8*a(n-7) -a(n-8) +a(n-9) k=5: a(n) = 6*a(n-1) -15*a(n-2) +35*a(n-3) -35*a(n-4) +56*a(n-5) -28*a(n-6) +36*a(n-7) -9*a(n-8) +10*a(n-9) -a(n-10) +a(n-11) k=6: a(n) = 7*a(n-1) -21*a(n-2) +56*a(n-3) -70*a(n-4) +126*a(n-5) -84*a(n-6) +120*a(n-7) -45*a(n-8) +55*a(n-9) -11*a(n-10) +12*a(n-11) -a(n-12) +a(n-13) k=7: a(n) = 8*a(n-1) -28*a(n-2) +84*a(n-3) -126*a(n-4) +252*a(n-5) -210*a(n-6) +330*a(n-7) -165*a(n-8) +220*a(n-9) -66*a(n-10) +78*a(n-11) -13*a(n-12) +14*a(n-13) -a(n-14) +a(n-15) Empirical for rows: n=1: a(k) = (2/3)*k^3 + (5/2)*k^2 + (17/6)*k + 1 n=2: a(k) = (1/3)*k^4 + (7/3)*k^3 + (14/3)*k^2 + (11/3)*k + 1 n=3: a(k) = (2/15)*k^5 + (11/6)*k^4 + (35/6)*k^3 + (23/3)*k^2 + (68/15)*k + 1 n=4: a(k) = (2/45)*k^6 + (19/15)*k^5 + (217/36)*k^4 + (71/6)*k^3 + (2057/180)*k^2 + (27/5)*k + 1 n=5: a(k) = (4/315)*k^7 + (7/9)*k^6 + (241/45)*k^5 + (1067/72)*k^4 + (3757/180)*k^3 + (1145/72)*k^2 + (2629/420)*k + 1 n=6: a(k) = (1/315)*k^8 + (134/315)*k^7 + (21/5)*k^6 + (571/36)*k^5 + (1841/60)*k^4 + (6047/180)*k^3 + (26603/1260)*k^2 + (299/42)*k + 1 n=7: a(k) = (2/2835)*k^9 + (131/630)*k^8 + (2803/945)*k^7 + (1349/90)*k^6 + (41449/1080)*k^5 + (20423/360)*k^4 + (1149293/22680)*k^3 + (22741/840)*k^2 + (2011/252)*k + 1 EXAMPLE Some solutions for n=4, k=3:   1   2   3   0   0   1   2   3   0   1   2   3   3   1   2   2   1   2   1   0   1   0   1   0   3   0   2   2   3   0   3   2   2   2   3   0   2   2   3   2   3   0   3   3   3   1   3   0   2   0   3   0   3   3   3   3   2   0   3   3   3   1   0   2   1   1   2   1   3   3   2   3   0   1   3   3   3   1   2   3   0   2   2   1   3   2   1   0   2   1   2   1   1   3   3   3 Table starts: ....7....22.....50......95......161.......252.......372........525........715 ...12....51....144.....325......636......1127......1856.......2889.......4300 ...21...121....422....1121.....2507......4977......9052......15393......24817 ...37...292...1268....3985....10213.....22736.....45648......84681.....147565 ...65...704...3823...14288....42182....105813....235538.....478467.....904111 ..114..1691..11472...50995...173606....491533...1215616....2710413....5567530 ..200..4059..34350..181336...710976...2269938...6233356...15250675...34054592 ..351..9749.102896..644721..2908797..10462235..31868448...85473225..207289059 ..616.23422.308419.2294193.11911516..48259083.163014678..479101189.1261310492 .1081.56268.924532.8166441.48807427.222798408.834763824.2688814689.7684922749 CROSSREFS Column 1 is A005251(n+5). Row 1 is A002412(n+1). Sequence in context: A130740 A101119 A217014 * A070412 A286572 A055575 Adjacent sequences:  A200883 A200884 A200885 * A200887 A200888 A200889 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Nov 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 18:42 EDT 2022. Contains 353824 sequences. (Running on oeis4.)