login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200877
Number of 0..n arrays x(0..8) of 9 elements without any interior element greater than both neighbors or less than both neighbors.
1
110, 1523, 9858, 42479, 141688, 395929, 971416, 2156867, 4424298, 8509105, 15512938, 27033149, 45322876, 73486107, 115712352, 177555837, 266264422, 391163735, 564102306, 799963779, 1117252576, 1538759685, 2092315544
OFFSET
1,1
COMMENTS
Row 7 of A200871.
LINKS
FORMULA
Empirical: a(n) = (1/181440)*n^9 + (131/20160)*n^8 + (8893/30240)*n^7 + (4621/1440)*n^6 + (118933/8640)*n^5 + (83957/2880)*n^4 + (763489/22680)*n^3 + (36343/1680)*n^2 + (9169/1260)*n + 1.
Conjectures from Colin Barker, Oct 16 2017: (Start)
G.f.: x*(110 + 423*x - 422*x^2 - 766*x^3 + 848*x^4 - 246*x^5 + 90*x^6 - 44*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=3
..3....3....3....3....3....0....2....2....3....2....3....3....1....1....2....2
..0....0....0....1....3....0....2....2....3....3....3....1....2....1....2....0
..0....0....0....1....3....2....1....0....3....3....3....1....2....1....1....0
..0....2....1....1....2....2....0....0....2....3....3....1....3....3....1....0
..3....2....3....1....1....2....0....2....2....3....1....3....3....3....0....0
..3....1....3....3....1....2....1....2....1....2....1....3....3....2....0....0
..3....0....3....3....0....2....2....0....1....0....1....3....2....1....0....0
..2....0....2....2....0....1....3....0....1....0....1....3....2....0....1....0
..0....1....2....1....2....1....3....2....1....1....3....2....3....0....3....3
CROSSREFS
Sequence in context: A231967 A232339 A358256 * A205348 A008450 A163729
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 23 2011
STATUS
approved