login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200837
Number of 0..7 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.
1
400, 2444, 15128, 93472, 577660, 3570086, 22063924, 136360286, 842739040, 5208328180, 32188710564, 198933910242, 1229459024390, 7598350081290, 46959616234372, 290221631449614, 1793638920327662, 11085116434803236
OFFSET
1,1
COMMENTS
Column 7 of A200838.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) -10*a(n-4) +12*a(n-5) -11*a(n-6) +11*a(n-7) -6*a(n-8) +3*a(n-9) -a(n-10).
Empirical g.f.: 2*x*(200 - 378*x + 188*x^2 - 312*x^3 + 378*x^4 - 329*x^5 + 338*x^6 - 183*x^7 + 92*x^8 - 32*x^9) / (1 - 8*x + 12*x^2 - 6*x^3 + 10*x^4 - 12*x^5 + 11*x^6 - 11*x^7 + 6*x^8 - 3*x^9 + x^10). - Colin Barker, Oct 16 2017
EXAMPLE
Some solutions for n=3
..7....3....6....6....2....3....0....3....7....0....2....1....1....0....3....0
..2....3....5....0....3....5....4....2....1....5....0....0....7....0....2....3
..7....6....6....4....2....5....2....7....4....4....4....5....3....4....2....3
..4....1....6....0....5....5....5....1....2....7....0....0....4....2....6....0
..7....5....5....5....2....3....0....1....4....6....0....4....4....4....5....0
CROSSREFS
Sequence in context: A061042 A223481 A037991 * A250847 A043400 A038483
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 23 2011
STATUS
approved