|
|
A200835
|
|
Number of 0..5 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.
|
|
1
|
|
|
176, 846, 4108, 19930, 96690, 469116, 2276028, 11042700, 53576350, 259938722, 1261156090, 6118806300, 29686880836, 144033141554, 698811908924, 3390456382404, 16449625906804, 79809371351400, 387214626739458
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 5 of A200838.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) -6*a(n-2) +3*a(n-3) -5*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7).
Empirical g.f.: 2*x*(88 - 105*x + 44*x^2 - 85*x^3 + 50*x^4 - 33*x^5 + 18*x^6) / (1 - 6*x + 6*x^2 - 3*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7). - Colin Barker, Oct 14 2017
|
|
EXAMPLE
|
Some solutions for n=3
..3....5....0....4....2....3....2....5....3....1....2....0....0....4....1....3
..3....4....3....1....1....5....0....1....0....1....3....5....2....5....4....4
..0....4....0....1....5....3....4....2....5....1....3....4....1....0....4....0
..0....0....2....4....0....3....2....2....4....3....1....5....1....4....4....0
..1....1....1....2....0....5....3....2....4....3....1....5....2....0....0....5
|
|
CROSSREFS
|
Sequence in context: A336026 A063344 A075291 * A133063 A264892 A223611
Adjacent sequences: A200832 A200833 A200834 * A200836 A200837 A200838
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin Nov 23 2011
|
|
STATUS
|
approved
|
|
|
|