Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 21 2018 11:26:47
%S 14,76,200,446,836,1368,2134,3140,4368,5942,7852,10064,12734,15836,
%T 19320,23374,27956,33000,38726,45076,51968,59654,68060,77088,87022,
%U 97772,109224,121694,135076,149240,164534,180836,198000,216406,235916,256368
%N Number of -n..n arrays x(0..3) of 4 elements with zero sum and nonzero second differences.
%C Row 2 of A200553.
%H R. H. Hardin, <a href="/A200554/b200554.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8).
%F Empirical g.f.: 2*x*(7 + 24*x + 31*x^2 + 47*x^3 + 24*x^4 + 9*x^5 + 2*x^6) / ((1 - x)^4*(1 + x + x^2)^2). - _Colin Barker_, May 21 2018
%e Some solutions for n=3:
%e .-2....2....2...-1....2...-3...-2...-2....1...-3....0...-1....1....2...-2....2
%e ..1...-3...-2....0...-1....3...-1....1....0....3...-1...-1...-2...-2...-1....1
%e ..2....1....0...-1....0....2....3...-2....1...-1....2....1....0...-3....2...-3
%e .-1....0....0....2...-1...-2....0....3...-2....1...-1....1....1....3....1....0
%Y Cf. A200553.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 19 2011