login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200554
Number of -n..n arrays x(0..3) of 4 elements with zero sum and nonzero second differences.
1
14, 76, 200, 446, 836, 1368, 2134, 3140, 4368, 5942, 7852, 10064, 12734, 15836, 19320, 23374, 27956, 33000, 38726, 45076, 51968, 59654, 68060, 77088, 87022, 97772, 109224, 121694, 135076, 149240, 164534, 180836, 198000, 216406, 235916, 256368
OFFSET
1,1
COMMENTS
Row 2 of A200553.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8).
Empirical g.f.: 2*x*(7 + 24*x + 31*x^2 + 47*x^3 + 24*x^4 + 9*x^5 + 2*x^6) / ((1 - x)^4*(1 + x + x^2)^2). - Colin Barker, May 21 2018
EXAMPLE
Some solutions for n=3:
.-2....2....2...-1....2...-3...-2...-2....1...-3....0...-1....1....2...-2....2
..1...-3...-2....0...-1....3...-1....1....0....3...-1...-1...-2...-2...-1....1
..2....1....0...-1....0....2....3...-2....1...-1....2....1....0...-3....2...-3
.-1....0....0....2...-1...-2....0....3...-2....1...-1....1....1....3....1....0
CROSSREFS
Cf. A200553.
Sequence in context: A093567 A296996 A270704 * A152100 A173962 A200547
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 19 2011
STATUS
approved