login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200334
Decimal expansion of Sum_{n = 2 .. infinity }[ 1 / Sum {i=1..m} d(i)^n] where d(i) are the distinct prime divisors of n and m = omega(n) is the number of distinct prime divisors of n.
0
3, 5, 5, 0, 9, 3, 5, 7, 1, 9, 3, 0, 6, 7, 7, 6, 2, 3, 6, 2, 7, 3, 7, 6, 9, 0, 2, 2, 4, 3, 3, 8, 8, 8, 8, 8, 5, 8, 9, 0, 6, 1, 7, 3, 5, 8, 7, 9, 6, 8, 1, 0, 5, 2, 5, 4, 1, 3, 1, 3, 9, 9, 4, 4, 8, 7, 4, 3, 6, 9, 9, 3, 7, 8, 7, 8, 2, 3, 1, 3, 9, 7, 9, 8, 3, 5, 1, 2, 5, 1, 9, 1, 3, 1, 5, 8, 0, 7, 9, 3, 7, 1, 5, 8, 3
OFFSET
0,1
EXAMPLE
0.3550935719306776236273769022433888885890...
MAPLE
with(numtheory):Digits:=200:s:=0:for n from 2 to 2000 do:x:=factorset(n):p:=sum(‘x[i]^n’, ’i’=1..nops(x)): s:=s+evalf(1/p):od:print(s):
MATHEMATICA
digits = 105; s[m_] := s[m] = Sum[f = FactorInteger[n][[All, 1]]; 1/Sum[p^n, {p, f}], {n, 2, m}] // RealDigits[#, 10, digits]& // First; s[digits] ; s[m = 2*digits]; While[s[m] != s[m/2], m = 2*m]; s[m] (* Jean-François Alcover, Feb 24 2014 *)
PROG
(PARI) sum(n=2, 1e3, f=factor(n)[, 1]; 1./sum(i=1, #f, f[i]^n)) \\ Charles R Greathouse IV, Nov 28 2011
CROSSREFS
Sequence in context: A284867 A343955 A152416 * A138112 A106233 A366568
KEYWORD
nonn,cons
AUTHOR
Michel Lagneau, Nov 28 2011
STATUS
approved