login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200133 Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = sin(x). 3
6, 8, 4, 8, 5, 3, 0, 7, 8, 6, 2, 3, 2, 0, 1, 1, 5, 9, 5, 6, 3, 6, 9, 4, 4, 6, 8, 6, 4, 9, 5, 4, 2, 8, 8, 8, 4, 5, 1, 8, 4, 2, 6, 1, 0, 3, 1, 8, 2, 0, 2, 6, 7, 1, 9, 2, 8, 2, 6, 1, 9, 9, 7, 6, 4, 6, 0, 2, 2, 5, 8, 4, 0, 3, 1, 2, 9, 4, 4, 3, 2, 7, 9, 2, 2, 5, 9, 2, 5, 2, 4, 0, 4, 6, 8, 1, 0, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.4137517591447739376844002798989...

greatest x: 0.684853078623201159563694468649...

MATHEMATICA

a = 3; b = -1; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.42, -.41}, WorkingPrecision -> 110]

RealDigits[r]   (* A200132 *)

r = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110]

RealDigits[r]   (* A200133 *)

PROG

(PARI) a=3; b=-1; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

CROSSREFS

Cf. A199949.

Sequence in context: A269802 A269991 A171784 * A021150 A065166 A006255

Adjacent sequences:  A200130 A200131 A200132 * A200134 A200135 A200136

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 17:19 EST 2020. Contains 332293 sequences. (Running on oeis4.)