login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200008 Decimal expansion of least x satisfying 4*x^2+cos(x)=4*sin(x). 3
4, 0, 3, 9, 5, 4, 8, 5, 6, 2, 7, 7, 0, 9, 9, 0, 5, 7, 8, 7, 9, 3, 5, 3, 4, 4, 6, 4, 2, 2, 1, 1, 0, 4, 1, 1, 1, 7, 5, 9, 3, 5, 1, 4, 1, 8, 7, 3, 6, 5, 1, 0, 3, 8, 3, 8, 8, 8, 5, 6, 4, 5, 4, 9, 5, 7, 2, 7, 5, 8, 6, 8, 5, 8, 4, 8, 9, 0, 1, 6, 0, 8, 0, 0, 5, 2, 9, 6, 5, 2, 1, 1, 0, 7, 6, 1, 7, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x:  0.4039548562770990578793534464221104111...

greatest x: 0.5924702907925039329312822762880632483...

MATHEMATICA

a = 4; b = 1; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, .3, .7}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .40, .41}, WorkingPrecision -> 110]

RealDigits[r]  (* A200008 *)

r = x /. FindRoot[f[x] == g[x], {x, .59, .60}, WorkingPrecision -> 110]

RealDigits[r]  (* A200009 *)

CROSSREFS

Cf. A199949.

Sequence in context: A248914 A246686 A048649 * A086751 A048281 A066273

Adjacent sequences:  A200005 A200006 A200007 * A200009 A200010 A200011

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 04:35 EST 2018. Contains 299358 sequences. (Running on oeis4.)