login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A199824
Primes in successive intervals (2^i +1 .. 2^(i+1) -1) i=1,2,3,... such that there are no prime symmetric XOR couples in either the original interval or any recursively halved interval that contains them.
3
67, 167, 587, 719, 751, 769, 1129, 1163, 1531, 1913, 2099, 2153, 2543, 2819, 3049, 3079, 3709, 3967, 4691, 4861, 4909, 5147, 5347, 5749, 5813, 5939, 6121, 6151, 6397, 6473, 6563, 6709, 6883, 6899, 6911, 7247, 7393, 7451, 7703, 7829, 7919, 8093, 8171, 8447, 8707, 8807, 8963, 9157, 9161, 9209
OFFSET
1,1
COMMENTS
The MAGMA program provided produces output with each interval delimited by the power of 2 that starts it.
All of these primes are a sparse subset of isolated primes (the only possible exception would be a twin prime that crosses the interval boundary, but none are known to occur).
In each interval XOR couples are produced by XORing a number in the interval with 2^i -2 where i is the index used in the interval definition. In recursively halved intervals, i is decremented each time down to i=2.
LINKS
EXAMPLE
In the interval (17 .. 31) i=4 the numbers are coupled symmetrically around the middle of the interval by XORing each with 2^i -2 where i=4 or 14.
|-------XOR 14-------|
| |--------------| |
| | |--------| | |
| | | |--| | | |
17 19 21 23 25 27 29 31
(17,31), (19,29) are prime XOR couples but the prime 23 has a composite couple (23,25).
23 is in the first half of the interval. XORing each number in the first half of the interval with 2^i -2 where i=3 or 6
|---XOR 6---|
| |---| |
17 19 21 23
(17,23) is a prime XOR couple and all primes in the interval have been coupled, therefore there are no primes with only composite couples in the interval (17 .. 31).
The first such prime occurs in the interval (65 ..127) and is 67
MAPLE
q:= (l, p, r)-> r-l=2 or not isprime(l+r-p) and
`if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r)):
a:= proc(n) local p, l;
p:= `if`(n=1, 3, a(n-1));
do p:= nextprime(p);
l:= 2^ilog2(p);
if q(l, p, l+l) then break fi
od; a(n):=p
end:
seq(a(n), n=1..60); # Alois P. Heinz, Nov 13 2011
MATHEMATICA
q[l_, p_, r_] := r - l == 2 || ! PrimeQ[l + r - p] &&
If[(l + r)/2 > p, q[l, p, (l + r)/2], q[(l + r)/2, p, r]];
a[n_] := a[n] = Module[{p, l},
p = If[n == 1, 3, a[n - 1]]; While[True, p = NextPrime[p];
l = 2^(Length[IntegerDigits[p, 2]]-1); If[q[l, p, l+l], Break[]]]; p];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 11 2021, after Alois P. Heinz *)
PROG
(Magma)
XOR := func<a, b | Seqint([ (adigs[i] + bdigs[i]) mod 2 : i in [1..n]], 2)
where adigs := Intseq(a, 2, n)
where bdigs := Intseq(b, 2, n)
where n := 1 + Ilog2(Max([a, b, 1]))>;
for i:= 4 to 16 do
"****", i;
for j:= 2^(i) +1 to 2^(i+1) -1 by 2 do
sympair:=0;
for k:= 2 to i do
xornum:=2^k -2;
xorcouple:=XOR(j, xornum);
if (IsPrime(j) and IsPrime(xorcouple)) then sympair:=1;
end if;
end for;
if ((sympair eq 0) and IsPrime(j)) then j;
end if;
end for;
end for;
CROSSREFS
Cf. A000040.
Sequence in context: A044399 A044780 A244773 * A341278 A142544 A259888
KEYWORD
nonn
AUTHOR
Brad Clardy, Nov 11 2011
STATUS
approved