The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199822 G.f. A(x) satisfies A(A(x))=(1-4*x-sqrt(1-8*x))/(8*x). 1
 1, 2, 6, 22, 90, 392, 1772, 8202, 38646, 185076, 900212, 4434356, 22009980, 109780044, 552560376, 2822976810, 14485344790, 72643772868, 361862583908, 2016493563604, 12216275226412, 46909968927072, -57894718593752, 1891831831407844, 70615065586770972 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..100 Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 [math.CO], 2013. FORMULA a(n) = T(n,1), where T(n,k) = if n=k then 1 else 1/2*(k*2^(n-k)*binomial(2*n,n-k)/n-sum(i=k+1..n-1, T(n,i)*T(i,k))). G.f. A(x) satisfies: A( A(x)/(1 + 2*A(x))^2 ) = x. - Paul D. Hanna, Aug 09 2016 EXAMPLE G.f.: A(x) = x + 2*x^2 + 6*x^3 + 22*x^4 + 90*x^5 + 392*x^6 +... where A(A(x)) = x*C(2*x)^2 and C(x) is the g.f. of the Catalan numbers; A(A(x)) = x + 4*x^2 + 20*x^3 + 112*x^4 + 672*x^5 + 4224*x^6 +... MATHEMATICA T[n_, n_] = 1; T[n_, k_] := T[n, k] = 1/2 (k*2^(n-k) Binomial[2n, n-k]/n - Sum[T[n, i] T[i, k], {i, k+1, n-1}]); a[n_] := T[n, 1]; Array[a, 25] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *) PROG (PARI) {a(n)=local(A, B, F); F=(1-4*x-sqrt(1-8*x+O(x^(n+3))))/(8*x); A=F; for(i=0, n, B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x)} /* Paul D. Hanna */ CROSSREFS Cf. A000108. Sequence in context: A165545 A306023 A150269 * A150270 A049136 A165523 Adjacent sequences: A199819 A199820 A199821 * A199823 A199824 A199825 KEYWORD sign AUTHOR Vladimir Kruchinin, Nov 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 19:17 EDT 2024. Contains 375954 sequences. (Running on oeis4.)