The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199734 Decimal expansion of greatest x satisfying x^2-4*x*cos(x)=3*sin(x). 3
 1, 6, 2, 5, 2, 7, 8, 3, 8, 3, 3, 7, 8, 4, 4, 8, 6, 4, 3, 9, 3, 3, 0, 0, 3, 2, 2, 6, 2, 4, 6, 8, 3, 6, 1, 0, 6, 0, 8, 6, 5, 5, 9, 6, 7, 1, 6, 5, 8, 5, 7, 2, 8, 1, 5, 4, 4, 7, 5, 9, 5, 5, 8, 3, 7, 9, 3, 6, 1, 2, 3, 7, 9, 4, 4, 8, 6, 8, 8, 1, 9, 7, 7, 8, 7, 3, 1, 5, 2, 5, 4, 9, 3, 4, 0, 9, 1, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A199597 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least: -3.746168565528221340687013560527596978856... greatest:  1.625278383378448643933003226246836106... MATHEMATICA a = 1; b = -4; c = 3; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110] RealDigits[r]   (* A199733 least root *) r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110] RealDigits[r]   (* A199734 greatest root *) CROSSREFS Cf. A199597. Sequence in context: A021020 A215578 A007320 * A007321 A062828 A124457 Adjacent sequences:  A199731 A199732 A199733 * A199735 A199736 A199737 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 08:46 EDT 2021. Contains 346340 sequences. (Running on oeis4.)