login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromic primes in the sense of A007500 with digits '0', '1' and '8' only.
2

%I #9 Dec 18 2015 02:53:18

%S 11,101,181,1181,1811,18181,108881,110881,118081,180181,180811,181081,

%T 188011,188801,1008001,1088081,1110881,1180811,1181881,1808801,

%U 1880111,1880881,1881811,1881881,10001081,10001801,10011101,10080011,10101181,10111001,10111081,10180801,10188811,10808101,10810001

%N Palindromic primes in the sense of A007500 with digits '0', '1' and '8' only.

%C Intersection of A007500 and A061247.

%H Chai Wah Wu, <a href="/A199328/b199328.txt">Table of n, a(n) for n = 1..4188</a>

%o (PARI) a(n=50,L=[0,1,8],show=0)={my(t);for(d=1,1e9,u=vector(d,i,10^(d-i))~;forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]),isprime(t=vector(d,i,L[v[i]])*u)|next;isprime(A004086(t))|next;show&print1(t",");n--|return(t)))}

%o (Python)

%o from itertools import product

%o from sympy import isprime

%o A199328_list = [n for n in (int(''.join(s)) for s in product('018',repeat=10)) if isprime(n) and isprime(int(str(n)[::-1]))] # _Chai Wah Wu_, Dec 17 2015

%Y Cf. A020449 - A020472, A199325 - A199329.

%K nonn,base

%O 1,1

%A _M. F. Hasler_, Nov 05 2011