login
A199286
Decimal expansion of x>0 satisfying 3*x^2+2*x*cos(x)=1.
3
3, 4, 3, 2, 7, 2, 8, 1, 9, 6, 2, 7, 0, 0, 0, 4, 2, 6, 4, 7, 8, 6, 9, 7, 0, 2, 7, 5, 0, 9, 7, 0, 2, 6, 9, 5, 3, 1, 9, 3, 1, 1, 0, 4, 5, 2, 6, 1, 0, 3, 2, 9, 0, 4, 8, 1, 3, 0, 3, 7, 5, 1, 5, 8, 9, 1, 1, 2, 9, 5, 4, 7, 8, 8, 9, 4, 9, 5, 1, 5, 5, 3, 0, 5, 6, 4, 0, 7, 8, 5, 8, 3, 0, 2, 6, 1, 1, 3, 0
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.840914700055474492704399020053615852...
positive: 0.3432728196270004264786970275097026953...
MATHEMATICA
a = 3; b = 2; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.85, -.84}, WorkingPrecision -> 110]
RealDigits[r] (* A199285 *)
r = x /. FindRoot[f[x] == g[x], {x, .34, .35}, WorkingPrecision -> 110]
RealDigits[r] (* A199286 *)
CROSSREFS
Cf. A199170.
Sequence in context: A275638 A281975 A133617 * A188722 A257526 A038774
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 05 2011
STATUS
approved