login
A199271
Decimal expansion of x<0 satisfying 2*x^2+2*x*cos(x)=3.
3
1, 3, 4, 2, 9, 0, 5, 1, 2, 2, 3, 2, 9, 3, 5, 6, 1, 5, 7, 7, 9, 5, 6, 2, 9, 2, 5, 8, 3, 8, 2, 8, 2, 5, 8, 2, 5, 1, 7, 0, 3, 3, 5, 1, 8, 8, 6, 9, 9, 2, 5, 8, 8, 4, 3, 2, 8, 6, 4, 6, 8, 6, 8, 3, 2, 9, 8, 0, 6, 6, 7, 4, 7, 5, 6, 5, 6, 3, 3, 0, 0, 9, 2, 1, 8, 5, 3, 7, 1, 2, 7, 1, 9, 2, 1, 4, 9, 8, 1
OFFSET
1,2
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.342905122329356157795629258382825825170...
positive: 0.976312273615130123076470141335091567967...
MATHEMATICA
a = 2; b = 2; c = 3;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.35, -1.34}, WorkingPrecision -> 110]
RealDigits[r] (* A199271 *)
r = x /. FindRoot[f[x] == g[x], {x, .97, .98}, WorkingPrecision -> 110]
RealDigits[r] (* A199272 *)
CROSSREFS
Cf. A199170.
Sequence in context: A082362 A082364 A346237 * A215175 A091477 A075593
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved