

A199173


Decimal expansion of x>0 satisfying x^2+x*cos(x)=2.


3



1, 2, 7, 6, 6, 7, 1, 3, 6, 7, 9, 4, 0, 7, 6, 0, 5, 5, 4, 0, 9, 1, 5, 0, 7, 4, 9, 0, 4, 4, 1, 2, 1, 0, 2, 7, 8, 3, 4, 0, 0, 2, 4, 6, 4, 7, 3, 4, 5, 6, 7, 6, 0, 6, 1, 5, 6, 6, 2, 8, 7, 6, 7, 4, 1, 2, 5, 9, 6, 3, 2, 8, 0, 1, 0, 9, 7, 6, 3, 1, 1, 9, 2, 3, 4, 4, 1, 8, 2, 9, 4, 3, 2, 4, 2, 4, 5, 7, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A199170 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

negative: 1.4669783053971235684198141847804443...
positive: 1.27667136794076055409150749044121027834...


MATHEMATICA

a = 1; b = 1; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2 Pi, 2 Pi}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.3}, WorkingPrecision > 110]
RealDigits[r] (* A199172 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.27, .28}, WorkingPrecision > 110]
RealDigits[r] (* A199173 *)


CROSSREFS

Cf. A199170.
Sequence in context: A110988 A047224 A127817 * A047232 A103557 A210963
Adjacent sequences: A199170 A199171 A199172 * A199174 A199175 A199176


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 04 2011


STATUS

approved



