login
A199169
Primes such that the sum of the squares of their digits equals the number of their digits.
1
11, 102001, 1000121, 1000211, 1002101, 1010201, 1020011, 1020101, 1021001, 1102001, 1120001, 1201001, 2001101, 2100011, 2110001, 100012111, 100101121, 100110121, 100112101, 100121011, 100211101, 101020111, 101100211, 101102101, 101110201, 101210101, 102100111
OFFSET
1,1
COMMENTS
A subsequence of 1, 11, 111, 1111, 2000, 10002, 10020, 10200, 11111,... which contains n such that A003132(n) = A055642(n). - R. J. Mathar, Nov 07 2011
LINKS
EXAMPLE
a(2) = 102001 is in the sequence because 1^2+0^2+2^2+0^2+0^2+1^2 = 6 = length(a(2)).
MAPLE
g:= proc(n, s) option remember; # <= n-digit numbers with sum of squares of digits = s
option remember; local j;
if s = 0 then return [0]
elif n = 0 then return []
fi;
[seq(op(map(t -> 10*t + j, procname(n-1, s-j^2))), j=0 .. min(9, floor(sqrt(s))))]
end proc:
sort([seq(op(select(t -> t >= 10^(n-1) and isprime(t), g(n, n))), n=1..9)]); # Robert Israel, Jan 09 2025
MATHEMATICA
fQ[n_] := Plus @@ (IntegerDigits[n]^2) == IntegerLength[n]; Select[Prime[Range[100000000]], fQ] (* Robert G. Wilson v, Nov 07 2011 *)
CROSSREFS
Cf. A069710.
Sequence in context: A165934 A110780 A087395 * A145571 A049193 A216596
KEYWORD
nonn,base,look
AUTHOR
Michel Lagneau, Nov 03 2011
STATUS
approved