login
A199154
Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=2.
3
1, 1, 2, 6, 2, 9, 9, 9, 4, 0, 9, 9, 3, 8, 7, 7, 5, 2, 3, 9, 9, 2, 8, 6, 7, 7, 3, 3, 6, 4, 1, 8, 6, 8, 5, 0, 7, 2, 2, 2, 7, 0, 7, 8, 8, 7, 1, 8, 7, 3, 6, 9, 6, 8, 2, 1, 0, 1, 2, 4, 1, 9, 8, 1, 3, 2, 7, 5, 3, 6, 9, 3, 2, 2, 5, 1, 7, 5, 0, 6, 8, 2, 5, 0, 4, 4, 0, 7, 7, 5, 3, 0, 0, 7, 7, 6, 0, 7, 6
OFFSET
1,3
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.126299940993877523992867733641868507222...
positive: 0.559372170813127047765629647326548920708...
MATHEMATICA
a = 3; b = 2; c = 2;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.13, -1.12}, WorkingPrecision -> 110]
RealDigits[r] (* A199154 *)
r = x /. FindRoot[f[x] == g[x], {x, .55, .56}, WorkingPrecision -> 110]
RealDigits[r] (* A199155 *)
CROSSREFS
Cf. A198866.
Sequence in context: A153190 A010240 A369994 * A267859 A002172 A126289
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 03 2011
STATUS
approved