|
|
A198879
|
|
Decimal expansion of x>0 satisfying 2*x^2-3*cos(x)=1.
|
|
2
|
|
|
1, 0, 9, 1, 6, 0, 2, 4, 7, 5, 2, 5, 0, 6, 5, 0, 8, 3, 1, 6, 8, 6, 9, 6, 9, 3, 0, 1, 5, 1, 2, 9, 5, 3, 4, 9, 6, 9, 6, 0, 2, 7, 0, 5, 7, 7, 3, 2, 6, 4, 9, 1, 2, 0, 0, 3, 3, 1, 3, 1, 8, 5, 0, 5, 5, 8, 6, 3, 4, 1, 8, 3, 3, 6, 8, 3, 5, 5, 0, 7, 9, 0, 7, 6, 3, 4, 8, 6, 0, 7, 3, 7, 2, 5, 4, 2, 7, 7, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
See A198755 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
|
|
EXAMPLE
|
x=1.091602475250650831686969301512953496960...
|
|
MATHEMATICA
|
a = 2; b = -3; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.09, 1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A198879 *)
|
|
CROSSREFS
|
Cf. A198755.
Sequence in context: A164802 A201888 A185825 * A161321 A090656 A058284
Adjacent sequences: A198876 A198877 A198878 * A198880 A198881 A198882
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 31 2011
|
|
STATUS
|
approved
|
|
|
|