

A198867


Decimal expansion of x > 0 satisfying x^2 + sin(x) = 1.


2



6, 3, 6, 7, 3, 2, 6, 5, 0, 8, 0, 5, 2, 8, 2, 0, 1, 0, 8, 8, 7, 9, 9, 0, 9, 0, 3, 8, 3, 8, 2, 8, 0, 0, 5, 8, 9, 9, 7, 8, 0, 5, 0, 7, 8, 8, 4, 1, 7, 9, 1, 6, 7, 3, 3, 8, 2, 8, 1, 8, 2, 6, 3, 1, 9, 5, 8, 0, 4, 4, 0, 2, 9, 0, 1, 2, 0, 2, 5, 9, 2, 6, 5, 1, 4, 5, 9, 4, 7, 3, 1, 1, 8, 0, 7, 4, 5, 9, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A198866 for a guide to related sequences. The Mathematica program includes a graph.


LINKS



EXAMPLE

negative: 1.40962400400259624923559397058949354...
positive: 0.63673265080528201088799090383828005...


MATHEMATICA

a = 1; b = 1; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.41, 1.40}, WorkingPrecision > 110]
r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision > 110]


PROG

(PARI) a=1; b=1; c=1; solve(x=0, 1, a*x^2 + b*sin(x)  c) \\ G. C. Greubel, Feb 20 2019
(Sage) a=1; b=1; c=1; (a*x^2 + b*sin(x)==c).find_root(0, 1, x) # G. C. Greubel, Feb 20 2019


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



