login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198774
Numbers having exactly three representations by the quadratic form x^2+xy+y^2 with 0<=x<=y.
8
637, 931, 1183, 1519, 1813, 1911, 2107, 2401, 2527, 2548, 2793, 2989, 3211, 3283, 3549, 3577, 3724, 3871, 4557, 4693, 4732, 4753, 5047, 5239, 5341, 5439, 5733, 6076, 6223, 6253, 6321, 6727, 6811, 7203, 7252, 7267, 7399, 7581, 7644, 7693, 7987, 8379, 8428
OFFSET
1,1
COMMENTS
A088534(a(n)) = 3; subsequence of A118886, see also A003136.
LINKS
EXAMPLE
a(1) = 637 = 4^2+4*23+23^2 = 7^2+7*21+21^2 = 12^2+12*17+17^2, A088534(637)=3;
a(2) = 931 = 1^2+1*30+30^2 = 9^2+9*25+25^2 = 14^2+14*21+21^2, A088534(273)=3.
MATHEMATICA
amax = 10000; xmax = Sqrt[amax] // Ceiling; Clear[f]; f[_] = 0; Do[q = x^2 + x y + y^2; f[q] = f[q] + 1, {x, 0, xmax}, {y, x, xmax}];
A198774 = Select[Range[0, 3 xmax^2], # <= amax && f[#] == 3&] (* Jean-François Alcover, Jun 21 2018 *)
PROG
(Haskell)
a198774 n = a198774_list !! (n-1)
a198774_list = filter ((== 3) . a088534) a003136_list
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 30 2011
STATUS
approved