The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198192 Replace 2^k in the binary representation of n with n-k (i.e. if n = 2^a + 2^b + 2^c + ... then a(n) = (n-a) + (n-b) + (n-c) + ...). 2
 0, 1, 1, 5, 2, 8, 9, 18, 5, 15, 16, 29, 19, 34, 36, 54, 12, 30, 31, 52, 34, 57, 59, 85, 41, 68, 70, 100, 75, 107, 110, 145, 27, 61, 62, 99, 65, 104, 106, 148, 72, 115, 117, 163, 122, 170, 173, 224, 87, 138, 140, 194, 145, 201, 204, 263, 156, 216, 219, 282, 226 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) = n*A000120(n) - A073642(n). - Franklin T. Adams-Watters, Oct 22 2011 a(n) = b(n,n) with b(0,k) = 0, b(n,k) = k*(n mod 2) + b(floor(n/2),k-1) for n>0. - Alois P. Heinz, Oct 25 2011 EXAMPLE a(5) = (5-2) + (5-0) = 8 because 5 = 2^2 + 2^0. a(7) = (7-2) + (7-1) + (7-0) = 18 because 7 = 2^2 + 2^1 + 2^0. MAPLE b:= (n, k)-> `if`(n=0, 0, k*(n mod 2)+b(floor(n/2), k-1)): a:= n-> b(n, n): seq(a(n), n=0..100);  # Alois P. Heinz, Oct 25 2011 PROG (MATLAB) % n is number of terms to be computed: function [B] = predAddition(n)    for i = 0:n       k = i;       c = 0;       s = 0;       while(k ~= 0)          if ((i - c) >= 0)             s = s + mod(k, 2)*(i-c);          end          c = c + 1;          k = (k - mod(k, 2))/2;       end       B(i+1) = s;    end end CROSSREFS Cf. A000120, A073642. Sequence in context: A001062 A187876 A179951 * A046878 A078335 A021658 Adjacent sequences:  A198189 A198190 A198191 * A198193 A198194 A198195 KEYWORD nonn,look,base AUTHOR Brian Reed, Oct 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 20:21 EDT 2022. Contains 356039 sequences. (Running on oeis4.)