login
A197842
Decimal expansion of greatest x having x^2+2x=cos(x).
3
3, 8, 7, 7, 2, 2, 1, 2, 0, 2, 5, 4, 9, 8, 5, 3, 3, 4, 2, 7, 1, 8, 5, 2, 0, 0, 5, 2, 4, 8, 3, 2, 9, 2, 3, 6, 1, 5, 7, 7, 1, 5, 8, 9, 3, 8, 9, 2, 9, 9, 4, 3, 6, 7, 8, 2, 8, 6, 6, 4, 9, 5, 4, 7, 0, 0, 9, 3, 5, 0, 2, 5, 3, 4, 4, 9, 6, 5, 8, 5, 5, 1, 3, 2, 2, 1, 7, 3, 7, 2, 1, 6, 3, 0, 2, 6, 2, 8, 3
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.85071744156198290129787883145887449239...
greatest x: 0.38772212025498533427185200524832923...
MATHEMATICA
a = 1; b = 2; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.9, -1.8}, WorkingPrecision -> 110]
RealDigits[r1] (* A197841 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .38, .39}, WorkingPrecision -> 110]
RealDigits[r2] (* A197842 *)
CROSSREFS
Cf. A197737.
Sequence in context: A195721 A021262 A276120 * A153020 A106043 A294833
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 20 2011
STATUS
approved