OFFSET
0,1
COMMENTS
Least x>0 such that sin(bx)=cos(cx) (and also sin(cx)=cos(bx)), where b=1 and c=2*pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
x=0.215674359575396757213396918572837666...
MATHEMATICA
b = 1; c = 2*Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .2, .3}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197683 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi/2}]
RealDigits[Pi/(2+4Pi), 10, 120][[1]] (* Harvey P. Dale, Oct 27 2016 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved