login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Special values of Hermite polynomials.
1

%I #28 Jun 04 2013 14:46:57

%S 1,8,66,560,4876,43488,396664,3695168,35114640,340039808,3352381984,

%T 33619852032,342711219904,3548566208000,37299021381504,

%U 397752024876032,4300986840453376,47135959519660032,523321228732695040,5883464372569321472,66953921672396983296

%N Special values of Hermite polynomials.

%H Vincenzo Librandi, <a href="/A197355/b197355.txt">Table of n, a(n) for n = 0..200</a>

%F In Maple notation, a(n)=I^n*HermiteH(n,-4*I), n=0,1... .

%F E.g.f.: exp(8*x+x^2).

%F Recurrence: a(n) = 8*a(n-1) + 2*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 20 2012

%F a(n) ~ 2^(n/2-1/2)*exp(4*sqrt(2*n)-n/2-8)*n^(n/2)*(1+19/3*sqrt(2)/sqrt(n)). - _Vaclav Kotesovec_, Oct 20 2012

%t CoefficientList[Series[E^(8*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 20 2012 *)

%o (PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( 8*x + x^2 + x*O(x^n) ), n))} /* _Michael Somos_, Oct 29 2011 */

%K nonn

%O 0,2

%A _Karol A. Penson_, Oct 17 2011