login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197355
Special values of Hermite polynomials.
1
1, 8, 66, 560, 4876, 43488, 396664, 3695168, 35114640, 340039808, 3352381984, 33619852032, 342711219904, 3548566208000, 37299021381504, 397752024876032, 4300986840453376, 47135959519660032, 523321228732695040, 5883464372569321472, 66953921672396983296
OFFSET
0,2
LINKS
FORMULA
In Maple notation, a(n)=I^n*HermiteH(n,-4*I), n=0,1... .
E.g.f.: exp(8*x+x^2).
Recurrence: a(n) = 8*a(n-1) + 2*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(n/2-1/2)*exp(4*sqrt(2*n)-n/2-8)*n^(n/2)*(1+19/3*sqrt(2)/sqrt(n)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[E^(8*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( 8*x + x^2 + x*O(x^n) ), n))} /* Michael Somos, Oct 29 2011 */
CROSSREFS
Sequence in context: A162758 A004331 A147959 * A121777 A056621 A152275
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 17 2011
STATUS
approved