|
|
A197121
|
|
Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(d))has norm 1 and minimum one from two parts of fundamental unit are not integer.
|
|
0
|
|
|
21, 69, 77, 84, 93, 133, 165, 189, 205, 213, 221, 237, 253, 276, 285, 301, 308, 309, 336, 341, 357, 372, 413, 429, 437, 453, 469, 501, 517, 525, 532, 581, 589, 597, 621, 645, 660, 669, 693, 717, 741, 749, 756, 789, 805, 820, 837, 852, 861, 869, 884, 893, 917
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
MATHEMATICA
|
cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == 1, k1 = Max[Denominator[d1], Denominator[d2]]; If[k1 == 1, , AppendTo[cr, n]]]], {n, 2, 2000}]; cr
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|