login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196874
Smallest prime(k) such that prime(k+n) - prime(k) is a perfect square.
3
2, 3, 43, 2, 7, 3, 61, 23, 17, 5, 109, 73, 67, 37, 19, 7, 3, 127, 73, 67, 31, 2, 277, 7, 3, 79, 89, 47, 53, 19, 13, 5, 151, 157, 1033, 73, 61, 31, 37, 307, 397, 1129, 163, 3, 103, 97, 613, 2, 587, 37, 13, 7, 197, 1009, 107, 137, 73, 613, 43, 23, 29, 13, 7, 193
OFFSET
1,1
COMMENTS
The corresponding indices k are in A196815.
LINKS
EXAMPLE
a(3) = 43 is the smallest initial prime of a subset of 4 consecutive primes {43, 47, 53, 59} such that 59 - 43 = 16 = 4^2.
MAPLE
A196874:= proc(n)
for k from 1 do
if issqr(ithprime(k+n)-ithprime(k)) then
return ithprime(k);
end if;
end do:
end proc:
seq(A196874(n), n=1..80) ; # (see A196815) R. J. Mathar, Oct 06 2011
MATHEMATICA
spk[n_]:=Module[{k=1}, While[!IntegerQ[Sqrt[Prime[n+k]-Prime[k]]], k++]; Prime[k]]; Array[spk, 70] (* Harvey P. Dale, Jul 23 2012 *)
PROG
(PARI) a(n) = {my(k=1); while (! issquare(prime(k+n)- prime(k)), k++); prime(k); } \\ Michel Marcus, Dec 28 2015
CROSSREFS
Sequence in context: A121475 A379922 A334533 * A087571 A126018 A257467
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 07 2011
STATUS
approved