login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196779
a(n) is the smallest number m such that no prime takes the form of n^m+/-n^k+/-1, while 0 <= k < m and m > 1.
0
1147, 113, 113, 400, 866, 131, 399, 32, 26, 29, 23, 58, 77, 21, 42, 3, 817, 4, 2, 37, 80, 29, 181, 39, 120, 382, 76, 5, 29, 20, 48, 19, 36, 7, 43, 7, 62, 22, 7, 43, 5, 17, 23, 44, 52, 137, 103, 2, 5, 49, 31, 10, 30, 5, 25, 25, 49, 10, 72, 50, 13, 4, 7, 6
OFFSET
5,1
COMMENTS
Conjecture: a(n) has finite value when a>4
already tested: a(4)>2364; a(3)>7399; and a(2)>9594.
Hypothesis is that a(2), a(3), and a(4) are infinite.
Mathematica program ran about an hour and gave the first 96 items.
When n is larger, a(n) tends to be 2 for most of n.
EXAMPLE
n=5, there is no prime number in the form of 5^1147+/-5^k+/-1 for 0 <= k < 1147
MATHEMATICA
Table[i = 1; While[i++; c1 = b^i; cs = {};
Do[c2 = b^j; cp = c1 + c2 + 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 + c2 - 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 + 1; If[PrimeQ[cp], cs = Union[cs, {cp}]];
cp = c1 - c2 - 1;
If[PrimeQ[cp], cs = Union[cs, {cp}]], {j, 0, i - 1}];
ct = Length[cs]; ct > 0]; i, {b, 5, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Lei Zhou, Oct 06 2011
STATUS
approved