login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196654
Decimal expansion of mean square width of the regular tetrahedron.
0
8, 3, 5, 4, 1, 9, 5, 1, 7, 9, 9, 1, 0, 5, 4, 6, 8, 8, 0, 4, 1, 5, 4, 3, 0, 2, 6, 1, 8, 2, 6, 8, 5, 2, 0, 4, 5, 3, 4, 7, 1, 4, 7, 8, 4, 9, 3, 6, 4, 5, 9, 7, 8, 1, 7, 6, 1, 7, 9, 0, 0, 2, 8, 2, 1, 4, 8, 0, 3, 6, 9, 6, 4, 2, 4, 8, 7, 6, 3, 3, 5, 1, 2, 7, 0, 2, 0, 9, 4, 8, 4, 7, 3, 5, 6, 3, 1, 3, 4, 9, 8, 1, 3, 7, 8
OFFSET
0,1
LINKS
Steven R. Finch, Width Distributions for Convex Regular Polyhedra, arXiv:1110.0671 [math.MG], 2011-2016.
Steven R. Finch, Mean width of a regular simplex, arXiv:1111.4976 [math.MG], 2011-2016, E(w_3^2).
FORMULA
Equals 1/3 + (3+sqrt(3))/(3*Pi).
EXAMPLE
0.83541951799105468804154302618268520453471478493645978176...
MATHEMATICA
RealDigits[1/3 + (3+Sqrt[3])/(3*Pi), 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
PROG
(PARI) 1/3+(3+sqrt(3))/(3*Pi) \\ Charles R Greathouse IV, Oct 04 2012
CROSSREFS
Sequence in context: A357108 A110234 A334073 * A019728 A265183 A113476
KEYWORD
nonn,easy,cons
AUTHOR
Jonathan Vos Post, Oct 04 2011
STATUS
approved