login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196348
Positive integers a for which there is a (1/5)-Pythagorean triple (a,b,c) satisfying a<=b.
7
5, 5, 7, 8, 9, 9, 10, 10, 11, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 24, 24, 25, 25, 25, 25, 25, 25, 27, 28, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 33, 34, 35, 35, 35, 35, 35, 36, 37, 38, 39, 39, 40, 40, 40, 40, 40, 41, 42, 42, 44
OFFSET
1,1
COMMENTS
See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
MATHEMATICA
z8 = 900; z9 = 250; z7 = 200;
k = 1/5; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
t[a_] := Table[d[a, b], {b, a, z8}]
u[n_] := Delete[t[n], Position[t[n], 0]]
Table[u[n], {n, 1, 15}]
t = Table[u[n], {n, 1, z8}];
Flatten[Position[t, {}]]
u = Flatten[Delete[t, Position[t, {}]]];
x[n_] := u[[3 n - 2]];
Table[x[n], {n, 1, z7}] (* A196348 *)
y[n_] := u[[3 n - 1]];
Table[y[n], {n, 1, z7}] (* A196349 *)
z[n_] := u[[3 n]];
Table[z[n], {n, 1, z7}] (* A196350 *)
x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
f = Table[x1[n], {n, 1, z9}];
x2 = Delete[f, Position[f, 0]] (* A196351 *)
g = Table[y1[n], {n, 1, z9}];
y2 = Delete[g, Position[g, 0]] (* A196352 *)
h = Table[z1[n], {n, 1, z9}];
z2 = Delete[h, Position[h, 0]] (* A196353 *)
CROSSREFS
Sequence in context: A320639 A153105 A201523 * A196351 A154583 A300916
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 01 2011
STATUS
approved