OFFSET
1,1
COMMENTS
See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
F:= proc(a)
sort(select(t -> subs(t, b) >= a and subs(t, c) > 0, [isolve](4*a^2 + 4*b^2 + a*b = 4*c^2)), (s, t) -> subs(s, b) <= subs(t, b))
end proc:
seq(a$nops(F(a)), a=1..40); # Robert Israel, Dec 18 2024
MATHEMATICA
(* Warning: this code is incorrect, as it imposes a limit b <= 900 *)
z8 = 900; z9 = 250; z7 = 200;
k = 1/4; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
t[a_] := Table[d[a, b], {b, a, z8}]
u[n_] := Delete[t[n], Position[t[n], 0]]
Table[u[n], {n, 1, 15}]
t = Table[u[n], {n, 1, z8}];
Flatten[Position[t, {}]]
u = Flatten[Delete[t, Position[t, {}]]];
x[n_] := u[[3 n - 2]];
Table[x[n], {n, 1, z7}] (* A196259 *)
y[n_] := u[[3 n - 1]];
Table[y[n], {n, 1, z7}] (* A196260 *)
z[n_] := u[[3 n]];
Table[z[n], {n, 1, z7}] (* A196261 *)
x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
f = Table[x1[n], {n, 1, z9}];
x2 = Delete[f, Position[f, 0]] (* A196262 *)
g = Table[y1[n], {n, 1, z9}];
y2 = Delete[g, Position[g, 0]] (* A196263 *)
h = Table[z1[n], {n, 1, z9}];
z2 = Delete[h, Position[h, 0]] (* A196264 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 30 2011
EXTENSIONS
Corrected by Robert Israel, Dec 18 2024
STATUS
approved