Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 05 2019 02:29:36
%S 1,3,10,26,83,322,1182,3971,15662,69371,328016,1460297,6080910,
%T 26901643,123926071,598722099,2838432721,13220493552,63710261040,
%U 312134646974,1554373859464,7673048166979,37597940705361,186986406578372
%N Number of different ways to select 5 disjoint subsets from {1..n} with equal element sum.
%e a(10) = 3: {1,8}, {2,7}, {3,6}, {4,5}, {9} have element sum 9; {1,9}, {2,8}, {3,7}, {4,6}, {10} have element sum 10; {1,10}, {2,9}, {3,8}, {4,7}, {5,6} have element sum 11.
%t b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}] ]];
%t T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
%t a[n_] := T[n, 5];
%t Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 9, 25}] (* _Jean-François Alcover_, Jun 08 2018, after _Alois P. Heinz_ *)
%Y Column k=5 of A196231. Cf. A000225, A161943, A164934, A164949, A196233, A196234, A196235, A196236, A196237.
%K nonn,more
%O 9,2
%A _Alois P. Heinz_, Sep 29 2011
%E a(26)-a(28) from _Alois P. Heinz_, Sep 25 2014
%E a(29)-a(32) from _Bert Dobbelaere_, Sep 05 2019