login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196232
Number of different ways to select 5 disjoint subsets from {1..n} with equal element sum.
7
1, 3, 10, 26, 83, 322, 1182, 3971, 15662, 69371, 328016, 1460297, 6080910, 26901643, 123926071, 598722099, 2838432721, 13220493552, 63710261040, 312134646974, 1554373859464, 7673048166979, 37597940705361, 186986406578372
OFFSET
9,2
EXAMPLE
a(10) = 3: {1,8}, {2,7}, {3,6}, {4,5}, {9} have element sum 9; {1,9}, {2,8}, {3,7}, {4,6}, {10} have element sum 10; {1,10}, {2,9}, {3,8}, {4,7}, {5,6} have element sum 11.
MATHEMATICA
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}] ]];
T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
a[n_] := T[n, 5];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 9, 25}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Sep 29 2011
EXTENSIONS
a(26)-a(28) from Alois P. Heinz, Sep 25 2014
a(29)-a(32) from Bert Dobbelaere, Sep 05 2019
STATUS
approved