login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196118
Partial sums of A004111.
2
0, 1, 2, 3, 5, 8, 14, 26, 51, 103, 216, 463, 1011, 2237, 5007, 11306, 25732, 58941, 135792, 314410, 731258, 1707554, 4001778, 9409162, 22189556, 52472676, 124397323, 295594279, 703904947, 1679567427, 4015010504, 9614519152, 23060649590, 55395487476
OFFSET
0,3
COMMENTS
A004111 is an important sequence and the OEIS should include various sequences derived from it.
LINKS
FORMULA
a(n) ~ c * A246169^n / n^(3/2), where c = 0.601433809400132103408618319570970615307211984303335915895942080355184647... - Vaclav Kotesovec, Dec 26 2020
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
end:
a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..50); # Alois P. Heinz, Feb 24 2015
MATHEMATICA
b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d+1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := a[n] = b[n] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 27 2011
STATUS
approved