The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196161 Binomial transform of {A004111(n), n >= 1}. 5
 1, 2, 4, 9, 22, 57, 155, 439, 1283, 3837, 11675, 36013, 112348, 353836, 1123431, 3591616, 11551046, 37343096, 121280307, 395496997, 1294457887, 4250811199, 14001176036, 46243806379, 153123238870, 508207709138, 1690355937970, 5633580018286, 18810483711103, 62917378114528, 210788885780702, 707273100413094 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA a(n) ~ c * d^n / n^(3/2), where d = 1 + A246169 = 3.51754035263200389079535459..., c = 0.428531715886712592684516703... - Vaclav Kotesovec, Oct 30 2017 MAPLE with(numtheory): b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add( b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1)) end: a:= n-> add(b(k+1)*binomial(n-1, k), k=0..n-1): seq(a(n), n=1..50); # Alois P. Heinz, Feb 24 2015 MATHEMATICA b[n_] := b[n] = If[n < 2, n, Sum[b[n - k]*Sum[ b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := Sum[b[k+1]*Binomial[n-1, k], {k, 0, n-1}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 12 2016, after Alois P. Heinz *) CROSSREFS Cf. A004111, A196154. Sequence in context: A105633 A287709 A348202 * A333069 A249561 A099241 Adjacent sequences: A196158 A196159 A196160 * A196162 A196163 A196164 KEYWORD nonn AUTHOR N. J. A. Sloane, Oct 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 00:14 EDT 2023. Contains 365554 sequences. (Running on oeis4.)