login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195702
Decimal expansion of arccos(-sqrt(2/3)).
4
2, 5, 2, 6, 1, 1, 2, 9, 4, 4, 9, 1, 9, 4, 0, 5, 8, 9, 7, 3, 9, 5, 1, 7, 8, 7, 9, 4, 1, 5, 5, 5, 0, 9, 1, 9, 6, 3, 4, 1, 9, 9, 9, 3, 9, 4, 6, 9, 7, 5, 5, 8, 4, 0, 1, 4, 4, 7, 1, 7, 0, 4, 2, 5, 4, 7, 5, 8, 2, 0, 2, 4, 9, 0, 4, 7, 0, 8, 0, 9, 5, 4, 7, 0, 1, 4, 0, 9, 0, 1, 5, 2, 5, 6, 6, 8, 6, 6, 0, 7
OFFSET
1,1
FORMULA
Equals Pi - arcsin(sqrt(1/3)) = Pi - arctan(sqrt(1/2)). - Amiram Eldar, Jul 10 2023
EXAMPLE
arccos(-sqrt(2/3)) = 2.5261129449405...
MATHEMATICA
r = Sqrt[2/3];
N[ArcSin[r], 100]
RealDigits[%] (* A195696 *)
N[ArcCos[r], 100]
RealDigits[%] (* A195695 *)
N[ArcTan[r], 100]
RealDigits[%] (* A195701 *)
N[ArcCos[-r], 100]
RealDigits[%] (* A195702 *)
RealDigits[ArcCos[-Sqrt[(2/3)]], 10, 120][[1]] (* Harvey P. Dale, Jan 15 2013 *)
PROG
(PARI) acos(-sqrt(2/3)) \\ G. C. Greubel, Nov 18 2017
(Magma) [Arccos(-Sqrt(2/3))]; // G. C. Greubel, Nov 18 2017
CROSSREFS
Cf. A195701.
Sequence in context: A198604 A198253 A159989 * A309714 A309431 A344077
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 23 2011
STATUS
approved