login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195587
a(n) = A163659(n^2), where A163659 is the logarithmic derivative of Stern's diatomic series (A002487).
3
1, 7, -2, 31, 1, -14, 1, 127, -2, 7, 1, -62, 1, 7, -2, 511, 1, -14, 1, 31, -2, 7, 1, -254, 1, 7, -2, 31, 1, -14, 1, 2047, -2, 7, 1, -62, 1, 7, -2, 127, 1, -14, 1, 31, -2, 7, 1, -1022, 1, 7, -2, 31, 1, -14, 1, 127, -2, 7, 1, -62, 1, 7, -2, 8191, 1, -14, 1, 31, -2, 7, 1, -254, 1, 7, -2, 31, 1, -14, 1, 511, -2, 7, 1, -62, 1, 7, -2, 127, 1, -14, 1, 31, -2, 7, 1, -4094
OFFSET
1,2
COMMENTS
Multiplicative because A163659 is. - Andrew Howroyd, Jul 26 2018
LINKS
FORMULA
L.g.f.: log(1+x+x^2) + Sum_{n>=0} 3*2^n * log(1 + x^(2*2^n) + x^(4*2^n)) = Sum_{n>=1} a(n)*x^n/n. - Paul D. Hanna, May 04 2014
G.f.: x*(1+2*x)/(1+x+x^2) + Sum_{n>=0} 6*4^n * x^(2*2^n) * (1 + 2*x^(2*2^n)) / (1 + x^(2*2^n) + x^(4*2^n)). - Paul D. Hanna, May 04 2014
Dirichlet g.f.: zeta(s) * (1 - 3^(1-s)) * (2^s + 2) / (2^s - 4). - Amiram Eldar, Oct 24 2023
EXAMPLE
L.g.f.: L(x) = x + 7*x^2/2 - 2*x^3/3 + 31*x^4/4 + x^5/5 - 14*x^6/6 + x^7/7 + 127*x^8/8 +...
where
exp(L(x)) = 1 + x + 4*x^2 + 3*x^3 + 15*x^4 + 12*x^5 + 37*x^6 + 25*x^7 +...
MATHEMATICA
a[n_] := Times @@ (Function[{p, e}, Which[p == 2, 2^(e+1) - 1, p == 3, -2, True, 1]] @@@ FactorInteger[n^2]);
a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019 *)
PROG
(PARI) {A163659(n)=if(n<1, 0, if(n%3, 1, -2)*sigma(2^valuation(n, 2)))}
{a(n)=A163659(n^2)}
for(n=1, 64, print1(a(n), ", "))
(PARI) {a(n)=local(X=x+x*O(x^n), A); A=log(1+X+X^2) + sum(k=0, #binary(n), 3*2^k*log(1 + X^(2*2^k) + X^(4*2^k))); n*polcoeff(A, n)}
for(n=1, 64, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Paul D. Hanna, Sep 20 2011
STATUS
approved