login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195556
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/3.
4
1, 12, 24, 35, 468, 900, 1333, 17760, 34188, 50615, 674424, 1298232, 1922041, 25610340, 49298640, 72986939, 972518508, 1872050076, 2771581645, 36930092952, 71088604260, 105247115567, 1402371013680, 2699494911792, 3996618809905
OFFSET
1,2
COMMENTS
See A195500 for a discussion and references.
FORMULA
Conjecture: a(n) = 37*a(n-3) + 37*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011
Empirical g.f.: x*(x^6+12*x^5+24*x^4-2*x^3+24*x^2+12*x+1) / (x^9-37*x^6-37*x^3+1). - Colin Barker, Jun 04 2015
MATHEMATICA
r = 1/3; z = 27;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195556, A195557 *)
Sqrt[a^2 + b^2] (* A195558 *)
(* Peter J. C. Moses, Sep 02 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 21 2011
STATUS
approved