login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195426
Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(7,24,25).
5
1, 3, 8, 2, 1, 1, 5, 8, 6, 0, 2, 8, 3, 0, 9, 9, 8, 8, 2, 6, 2, 0, 7, 5, 3, 9, 9, 1, 3, 0, 7, 2, 8, 0, 2, 7, 9, 6, 5, 1, 8, 4, 5, 0, 4, 8, 2, 3, 5, 7, 9, 5, 9, 2, 6, 9, 4, 3, 5, 8, 5, 0, 5, 0, 6, 0, 8, 5, 3, 2, 2, 1, 3, 5, 1, 9, 2, 4, 4, 8, 4, 5, 0, 1, 0, 0, 3, 8, 2, 2, 7, 4, 4, 9, 2, 4, 2, 6, 4, 6
OFFSET
2,2
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(B)=13.821158602830998826207539913072802796518450...
MATHEMATICA
a = 7; b = 24; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195425 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195426 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195427 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195428 *)
CROSSREFS
Cf. A195304.
Sequence in context: A280567 A280835 A335930 * A202537 A356418 A220516
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 18 2011
STATUS
approved