login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195422
Permanents of certain n X 2 cyclic (1,-1) matrices.
1
-3, 2, 2, -8, 16, -16, 80, 384, 4160, 43008, 494336, 6136832, 82118656, 1178294272, 18053433344, 294241402880, 5083946115072, 92835116318720, 1786595439869952, 36144509314138112, 766933328068345856
OFFSET
1,1
LINKS
A. R. Krauter, Uber die Permanente gewisser Matrizen und damit zusammenhangender..., Sem. Loth. Combinat. B11B (1984) 82-94, eq. (3.12)
FORMULA
a(n) = Sum_{k=0..n} (-2)^k*2*n*binomial(2*n-k,k)*(n-k)!/(2*n-k).
a(n) ~ exp(-4) * n!. - Vaclav Kotesovec, Dec 17 2015
Conjecture: (-n+2)*a(n) +(n^2-4*n+6)*a(n-1) +2*(n^2-2*n+3)*a(n-2) +8*(n-1)*a(n-3) = 0. - R. J. Mathar, Jul 20 2016
Conjecture: a(n) -n*a(n-1) -8*a(n-2) +4*(n-4)*a(n-3) +16*a(n-4) = 0. - R. J. Mathar, Jul 20 2016
MAPLE
A195422 := proc(n)
local k;
add((-2)^k*2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), k=0..n) ;
end proc: # R. J. Mathar, Jul 20 2016
MATHEMATICA
Table[Sum[(-2)^k*2*n*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 17 2015 *)
CROSSREFS
Sequence in context: A242703 A141456 A137445 * A176530 A011319 A177460
KEYWORD
sign,easy
AUTHOR
R. J. Mathar, Sep 18 2011
STATUS
approved