The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195335 a(n) is the smallest Xmas tree prime with a(n-1) as a prefix (starting with 2). 2
 2, 211, 211151, 2111511013, 211151101310867, 211151101310867100673, 2111511013108671006731000357, 211151101310867100673100035710000931, 211151101310867100673100035710000931100000213, 2111511013108671006731000357100009311000002131000000901, 211151101310867100673100035710000931100000213100000090110000001797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A Xmas tree prime is a prime which is a concatenation of a prime with a single digit, a prime with two digits, a prime with three digits, a prime with four digits etc. By definition, the number of digits is a triangular number (A000217). Leading zeros are not allowed for any of the primes. LINKS Terry Trotter, Xmas tree primes [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - N. J. A. Sloane, Mar 29 2018] MAPLE read("transforms") ; A195335 := proc(n) option remember; local prev, nxt, a ; if n =1 then 2; else prev := procname(n-1) ; for nxt from 10^(n-1) to 10^n-1 do if isprime(nxt) then a := digcat2(prev, nxt) ; if isprime(a) then return a ; end if; end if; end do: return -1 ; end if; end proc: # R. J. Mathar, Sep 20 2011 PROG (Python) from sympy import isprime, nextprime def alst(nn): alst, astr = [2], "2" for n in range(2, nn+1): p = nextprime(10**(n-1)) while not isprime(int(astr + str(p))): p = nextprime(p) alst.append(int(astr + str(p))); astr += str(p) return alst print(alst(11)) # Michael S. Branicky, Dec 26 2020 CROSSREFS Cf. A000217. Sequence in context: A107612 A068814 A215641 * A090560 A181903 A345397 Adjacent sequences: A195332 A195333 A195334 * A195336 A195337 A195338 KEYWORD nonn,base AUTHOR Kausthub Gudipati, Sep 16 2011 EXTENSIONS Name corrected by Michael S. Branicky, Dec 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 03:44 EST 2023. Contains 360082 sequences. (Running on oeis4.)