login
A195116
a(n) = (2+3^n)*(3+2^n).
1
12, 25, 77, 319, 1577, 8575, 48977, 286759, 1699817, 10137775, 60645377, 363332599, 2178384857, 13065493375, 78378545777, 470228096839, 2821239178697, 16927047127375, 101561119454177, 609363227843479, 3656168902513337, 21936982025631775
OFFSET
0,1
FORMULA
G.f.: (12-119*x+341*x^2-294*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
Sum_{i=0..n} a(i) = (1/10)*(12*6^n+45*3^n+40*2^n+60*n+23).
MATHEMATICA
Table[(2 + 3^n) (3 + 2^n), {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2013 *)
PROG
(Magma) [(2+3^n)*(3+2^n): n in [0..21]];
(PARI) for(n=0, 21, print1((2+3^n)*(3+2^n)", "));
(Python)
def a(n): return (2+3**n)*(3+2**n)
print([a(n) for n in range(23)]) # Michael S. Branicky, Dec 25 2021
CROSSREFS
Cf. A060013 ((1+2^n)*(2+1) with n>3).
Cf. A021029 (for the recurrence).
Sequence in context: A292493 A042869 A041282 * A041284 A171069 A042193
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 09 2011
STATUS
approved