

A194980


Fractalization of (1+[n/sqrt(3)]), where [ ]=floor.


6



1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 6, 7, 4, 2, 1, 3, 5, 6, 8, 7, 4, 2, 1, 3, 5, 6, 8, 9, 7, 4, 2, 1, 3, 5, 6, 8, 10, 9, 7, 4, 2, 1, 3, 5, 6, 8, 10, 11, 9, 7, 4, 2, 1, 3, 5, 6, 8, 10, 12, 11, 9, 7, 4, 2, 1, 3, 5, 6, 8, 10, 12, 13, 11, 9, 7, 4, 2, 1, 3, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[n/sqrt(3)]) is A194979.


LINKS

Table of n, a(n) for n=1..94.


MATHEMATICA

r = Sqrt[3]; p[n_] := 1 + Floor[n/r]
Table[p[n], {n, 1, 90}] (* A194979 = 1+ A097337 *)
g[1] = {1}; g[n_] := Insert[g[n  1], n, p[n]]
f[1] = g[1]; f[n_] := Join[f[n  1], g[n]]
f[20] (* A194980 *)
row[n_] := Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_] := Part[row[n], k];
w = Flatten[Table[v[k, n  k + 1], {n, 1, 13},
{k, 1, n}]] (* A194981 *)
q[n_] := Position[w, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194982 *)


CROSSREFS

Cf. A194959, A194879, A194981, A194982.
Sequence in context: A275015 A211189 A194968 * A323607 A194959 A194921
Adjacent sequences: A194977 A194978 A194979 * A194981 A194982 A194983


KEYWORD

nonn


AUTHOR

Clark Kimberling, Sep 07 2011


STATUS

approved



