The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194965 Fractalization of (A053824(n+5)), n>=0. 3
 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 6, 2, 3, 4, 5, 1, 6, 7, 2, 3, 4, 5, 1, 6, 7, 8, 2, 3, 4, 5, 1, 6, 7, 8, 9, 2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11, 12, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11, 12, 13, 7, 8, 9, 10, 2, 3, 4, 5, 1, 6, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (A053724(n+5)), n>=0 is formed by concatenating 5-tuples of the form (n,n+1,n+2, n+3,n+4) for n>=1:  1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,... LINKS MATHEMATICA p[n_] := Floor[(n + 4)/5] + Mod[n - 1, 5] Table[p[n], {n, 1, 90}]  (* A053824(n+5), n>=0 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20]   (* A194965 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A194966 *) q[n_] := Position[w, n]; Flatten[ Table[q[n], {n, 1, 80}]]  (* A194967 *) CROSSREFS Cf. A194959, A194965, A194966, A194967. Sequence in context: A243730 A133994 A066041 * A243712 A256553 A194896 Adjacent sequences:  A194962 A194963 A194964 * A194966 A194967 A194968 KEYWORD nonn AUTHOR Clark Kimberling, Sep 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 23:41 EDT 2021. Contains 345088 sequences. (Running on oeis4.)