The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194917 Fractalization of (n-[nr-n]), where [ ]=floor and r=(1+sqrt(5))/2 (the golden ratio). 3
 1, 2, 1, 2, 3, 1, 2, 4, 3, 1, 2, 5, 4, 3, 1, 2, 5, 6, 4, 3, 1, 2, 5, 7, 6, 4, 3, 1, 2, 5, 7, 8, 6, 4, 3, 1, 2, 5, 7, 9, 8, 6, 4, 3, 1, 2, 5, 7, 10, 9, 8, 6, 4, 3, 1, 2, 5, 7, 10, 11, 9, 8, 6, 4, 3, 1, 2, 5, 7, 10, 12, 11, 9, 8, 6, 4, 3, 1, 2, 5, 7, 10, 13, 12, 11, 9, 8, 6, 4, 3, 1, 2, 5, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (n-[nr-n]) is A189663. LINKS Table of n, a(n) for n=1..94. MATHEMATICA r = GoldenRatio; p[n_] := n - Floor[n/r] Table[p[n], {n, 1, 90}] (* A189663 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A194917 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[ Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194918 *) q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194919 *) CROSSREFS Cf. A194959, A189663, A194918, A194919. Sequence in context: A194983 A195073 A194987 * A194914 A195076 A163491 Adjacent sequences: A194914 A194915 A194916 * A194918 A194919 A194920 KEYWORD nonn AUTHOR Clark Kimberling, Sep 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 13:17 EDT 2023. Contains 363050 sequences. (Running on oeis4.)